шпаргалка

52

[ Назад ]

(Площадь плоской фигуры) Заключим фигуру Р в прямоугольник со сторонами параллельными осм Ох и Оу прямоуг обозн R; Разабьём прам R на мн-во мелких прямоуг.; Обозначим А фигуру полученную объединением прямоуг , целиком лежащих в плоскости R, а через В фигуру полученную объедин прямоугольников лежащих в Р. A-?A B-?B ; Пусть d- наибольшая диагональ прямоугольников разбиения, если при d®0 ?A и ?B ® к одному и томуже пределу, то фигура Р-наз квадрируемой, а её площадь считается равной ?; Пусть ф-ция f(x) –непрерывна на [a,b] и f(x)?0 "x?[a;b] и ограничена снизу осью Ох а по бокам x=a, x=b. Пусть t={xi}i=0i=it-произвольное разбиение отр [a,b]; git={(x,y), x?[xi-1,xi], 0?y?mi=inff(x)} Git={(x,y), x?[xi-1,xi], 0?y?Mi=supf(x)}; Sgt=?i=1itmiDxi; SGt=?i=1itMiDxi {T} Для того, чтобы ф-ция f(x) огр на [a,b] была интегрируема на этом отр. необходимо и достаточно : lim|t|®0(Sgt-SGt)=0 {Д} т.к. ф-ция f(x) –нерерывна на отр[a,b] то она интегрируема на этом отр. ? по критерию итегрируемости lim|t|®0SGt= lim|t|®0Sgt=S= aobf(x)dx {сектор} Сектор ограничен кривой r=f(j), где f(j) – непрерывна на [a,b] и f(j)?0 "j?[a,b] {} Пусь t-произвольное разбиение git={(j,r), j?[ji-1,ji], 0?r?mi=inff(j)} Git={(j,r), j?[ji-1,ji], 0?r?Mi=supf(j)} Т.к. ф-ция f(x)-непрерывна на отр[a,b] то она интегрируема на этом отрезке? Площадь сектора git=m?iDj/2 и Git=M?iDj/2; Sgt=1/2??i=1itm?iDj SGt=1/2??i=1itM?iDj по критерии итегрируемости ? lim|t|®0SGt= lim|t|®0Sgt=S=1/2? aotf?(j)dj? P-квадрируема и Sp=1/2? aobf?(j)dj.



КАТЕГОРИИ:

Network | английский | архитектура эвм | астрономия | аудит | биология | вычислительная математика | география | Гражданское право | демография | дискретная математика | законодательство | история | квантовая физика | компиляторы | КСЕ - Концепция современного естествознания | культурология | линейная алгебра | литература | математическая статистика | математический анализ | Международный стандарт финансовой отчетности МСФО | менеджмент | метрология | механика | немецкий | неорганическая химия | ОБЖ | общая физика | операционные системы | оптимизация в сапр | органическая химия | педагогика | политология | правоведение | прочие дисциплины | психология (методы) | радиоэлектроника | религия | русский | сертификация | сопромат | социология | теория вероятностей | управление в технических системах | физкультура | философия | фотография | французский | школьная математика | экология | экономика | экономика (словарь) | язык Assembler | язык Basic, VB | язык Pascal | язык Си, Си++ |