шпаргалка

Количественные характеристики надёжности

[ Назад ]

Для оценки надёжности СИ используют определенные критерии надёжности. Критерием надёжности называется признак, по которому оценивается надёжность различных СИ.

Характеристика надёжности - признак, но которому оценивается количественное значение критерия надёжности конкретного изделия.

Выбор количественных характеристик надёжности зависит от класса проектирования СИ.

Основные критерии надёжности можно разбить на две группы (рис.10.1):

1) критерий надежности, характеризующий надёжность невосстанавливаемых СИ;

2) характеризуемые надёжности восстанавливаемых изделий.

При анализе надёжности невосстанавливаемых изделий будем считать, что испытания на надежность подвергается N изделий, и испытания были закон-чены, если все изделия вышли из строя, причём вместо отказавших изделий новое пли отремонтированное изделие не ставится. В этом случае под интенсивностью отказов понимают отношение числа отказавших изделий в единицу времени к среднему числу изделий

Надёжность отдельных элементов также характеризуется интенсивностью от-казов. Интенсивность отказа элемента показывает, какая доля элементов данною типа в среднем выходит из строя за 1 час работы (λ(1/час)).

В дальнейшем интенсивность отказа СИ будем обозначать λ, а интенсивность отказов элементов - λj, где j - номер элемента или типа элементов в схеме СИ. Значение интенсивности отказов элементов СИ получены экспериментально на основании анализа результатов эксплуатации большого количества изделий и помешены в справочниках по надёжности.

При анализе надежности восстанавливаемых изделий могут использоваться критерии надёжности невосстанавливаемой аппаратуры, но при условии, что время работы берётся до 1-го отказа. Другими критериями надёжности для восстанавливаемой аппаратуры является:

1) наработка на отказ Т0;

2) коэффициент готовности Кг;

3) коэффициент вынужденного простоя Кн.



10.3. Расчёты надёжности при проектировании СИ

Первые расчёты надёжности делают на ранних стадиях разработки, а с уточнением сведений об изделии уточняются и расчёты надёжности, которые сопоставляются с Т3. Существующие методы расчёта надёжности сводятся к определению вероятности безотказной работы P(t) и средней наработки до первого отказа Тср по известным интенсивностям отказа элементов схемы. В зависимости от полноты учетов факторов, влияющих на работу изделия и её надёжность, последовательно проводят три расчёта надёжности:

1) прикидочный;

2) ориентировочный;

3) окончательный.

Прикидочный расчет надежности позволяет судить о принципиальной возможности обеспечения требуемой надёжности изделия. Используется при проверке требований по надёжности, выдвинутых заказчиком в ТЗ, при сравнительной оценке надёжности различных вариантов выполненных изделий на ранних стадиях разработки. При прикидочном расчете делается 3 вида допущения:

1) все элементы схемы равнонадёжны, так как принципиальная электриче-ская схема ещё окончательно не разработана;

2) соединения элементов с точки зрения надёжности таково, что выход из строя любого элемента приводит к отказу всего изделия;

3) интенсивность отказа элементов берётся для периода нормальной работы,

когда λi(t)=const.

Ориентировочный расчет надежности проводится тогда, когда на изделие и все его составные части разработана электрическая принципиальная схема. При ориентировочном расчете учитывается влияние на надёжность изделия, количество и типы применяемых в схеме элементов. При расчете делается следующие три допущения:

1) все элементы схемы работают в нормальном режиме, предусмотрен-ные ТУ на эти элементы;

2) все элементы СИ работают одновременно;

3) интенсивности отказов элементов каждого типа берутся для периода нормальной работы, т.е. λi (t)=const.



Ориентировочный расчет надежности позволяет определить рациональный состав элементов изделия и наметить пути повышения надежности.

Окончательный расчёт надежности проводится на этапе технического проектирования и учитывает влияние на характеристики надёжности режимов работы элементов в схеме и конкретные условия эксплуатации СИ.



КАТЕГОРИИ:

Network | английский | архитектура эвм | астрономия | аудит | биология | вычислительная математика | география | Гражданское право | демография | дискретная математика | законодательство | история | квантовая физика | компиляторы | КСЕ - Концепция современного естествознания | культурология | линейная алгебра | литература | математическая статистика | математический анализ | Международный стандарт финансовой отчетности МСФО | менеджмент | метрология | механика | немецкий | неорганическая химия | ОБЖ | общая физика | операционные системы | оптимизация в сапр | органическая химия | педагогика | политология | правоведение | прочие дисциплины | психология (методы) | радиоэлектроника | религия | русский | сертификация | сопромат | социология | теория вероятностей | управление в технических системах | физкультура | философия | фотография | французский | школьная математика | экология | экономика | экономика (словарь) | язык Assembler | язык Basic, VB | язык Pascal | язык Си, Си++ |